Procedure Call Standard for the ARM 64-bit Architecture

Procedure Call Standard for the
ARM 64-bit Architecture
(AArch64)

Document number: ARM IHI 0055C_beta, current through AArch64 ABI release 1.0
Date of Issue: 6" November 2013

ILP32 Beta

This document is a beta proposal for ILP32 extensions to the PCS for AArch64.
All significant ILP32 changes are highlighted in yellow.
Feedback welcome through your normal channels.

Abstract

This document describes the Procedure Call Standard use by the Application Binary Interface (ABI) for the ARM
64-bit architecture.

Keywords

Procedure call function call, calling conventions, data layout

How to find the latest release of this specification or report a defect in it

Please check the ARM Information Center (http://infocenter.arm.com/) for a later release if your copy is more than 3 months old
(navigate to the Software Development Tools section, Application Binary Interface for the ARM Architecture subsection).

Please report defects in this specification to arm dot eabi at arm dot com.

Licence

THE TERMS OF YOUR ROYALTY FREE LIMITED LICENCE TO USE THIS ABI SPECIFICATION ARE GIVEN IN SECTION
1.4, Your licence to use this specification (ARM contract reference LEC-ELA-00081 V2.0). PLEASE READ THEM
CAREFULLY.

BY DOWNLOADING OR OTHERWISE USING THIS SPECIFICATION, YOU AGREE TO BE BOUND BY ALL OF ITS TERMS.
IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE THIS SPECIFICATION.

THIS ABI SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES (SEE SECTION 1.4 FOR DETAILS).

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 1 of 34

Procedure Call Standard for the ARM 64-bit Architecture

Proprietary notice

ARM, Thumb, RealView, ARM7TDMI and ARM9TDMI are registered trademarks of ARM Limited. The ARM logo
is a trademark of ARM Limited. ARM9, ARM926EJ-S, ARM946E-S, ARM1136J-S ARM1156T2F-S ARM1176JZ-S

Cortex, and Neon are trademarks of ARM Limited. All other products or services mentioned herein may be
trademarks of their respective owners.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 2 of 34

Procedure Call Standard for the ARM 64-bit Architecture

Contents

1 ABOUT THIS DOCUMENT

1.1 Change Control
1.1.1 Current Status and Anticipated Changes
1.1.2 Change History

1.2 References

1.3 Terms and Abbreviations

1.4 Your licence to use this specification

1.5 Acknowledgements
2 SCOPE

3 INTRODUCTION
3.1 Design Goals

3.2 Conformance

4 DATA TYPES AND ALIGNMENT

4.1 Fundamental Data Types
4.1.1 Half-precision Floating Point
4.1.2 Short Vectors
4.1.3 Pointers

4.2 Byte Order (“Endianness”)

4.3 Composite Types
4.3.1 Aggregates
4.3.2 Unions
4.3.3 Arrays
4.3.4 Bit-fields
4.3.5 Homogeneous Aggregates

5 THE BASE PROCEDURE CALL STANDARD

5.1 Machine Registers
5.1.1 General-purpose Registers
5.1.2 SIMD and Floating-Point Registers

5.2 Processes, Memory and the Stack
5.2.1 Memory Addresses
5.2.2 The Stack
5.2.3 The Frame Pointer

5.3 Subroutine Calls

oo,

10

10

10

1

1
12
12
12

12

13
13
14
14
14
14

15

15
15
16

16
17
17
17

18

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 3 of 34

Procedure Call Standard for the ARM 64-bit Architecture

5.4 Parameter Passing
5.4.1 Variadic Subroutines
5.4.2 Parameter Passing Rules

5.5 Result Return

5.6 Interworking

6 THE STANDARD VARIANTS
6.1 Half-precision Format Compatibility
6.2 Sizeof(long), sizeof(wchar_t), pointers

6.3 Size_t, ptrdiff_t

7 ARM C AND C++ LANGUAGE MAPPINGS

7.1 Data Types
7.1.1 Arithmetic Types
7.1.2 Types Varying by Data Model
7.1.3 Enumerated Types
7.1.4 Additional Types
7.1.5 Definition of va_list
7.1.6 Volatile Data Types
7.1.7 Structure, Union and Class Layout
7.1.8 Bit-fields

7.2 Argument Passing Conventions

ARM IHI 0055C_beta

18
18
18

20

21

22

22

22

22

23

23
23
24
25
25
25
25
26
26

28

Copyright © 2010-2013 ARM Limited. All rights reserved. Page 4 of 34

Procedure Call Standard for the ARM 64-bit Architecture

1 ABOUT THIS DOCUMENT

1.1 Change Control

1.1.1 Current Status and Anticipated Changes
This document’s status is released. Clarifications, extensions and minor changes should be expected.

1.1.2 Change History

Issue Date By Change
00Bet3 25" November RE Beta release
2011
1.0 22" May 2013 RE First public release
1.1-beta 6" November 2013 JP ILP32 Beta

1.2 References

This document refers to, or is referred to by, the following documents.

Ref URL or other reference Title

AAPCS64 Source for this document Procedure Call Standard for the ARM 64-bit
Architecture

CPPABI64 IHI 0059 C++ ABI for the ARM 64-bit Architecture

GC++ABI http://mentorembedded.github.io/cxx-abi/abi.html Generic C++ ABI

1.3 Terms and Abbreviations

The ABI for the ARM 64-bit Architecture uses the following terms and abbreviations.

Term Meaning

A32 The instruction set named ARM in the ARMv7 architecture; A32 uses 32-bit fixed-length
instructions.

A64 The instruction set available when in AArch64 state.

AAPCS64 Procedure Call Standard for the ARM 64-bit Architecture (AArch64)

AArch32 The 32-bit general-purpose register width state of the ARMv8 architecture, broadly
compatible with the ARMv7-A architecture.

AArch64 The 64-bit general-purpose register width state of the ARMv8 architecture.

ABI Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the ARM Architecture.

2. A particular aspect of the specifications to which independently produced relocatable
files must conform in order to be statically linkable and executable. For example, the
C++ ABI for the ARM Architecture, ELF for the ARM Architecture, ...

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 5 of 34

Procedure Call Standard for the ARM 64-bit Architecture

Term
ARM-based

Floating point

ILP32
LP64
LLP64

Q-o-l

SIMD

SIMD and
floating point

T32

Meaning
... based on the ARM architecture ...

Depending on context floating point means or qualifies: (a) floating-point arithmetic
conforming to IEEE 754 2008; (b) the ARMv8 floating point instruction set; (c) the register
set shared by (b) and the ARMv8 SIMD instruction set.

SysV-like data model where int, long int and pointer are 32-bit

SysV-like data model where int is 32-bit, but long int and pointer are 64-bit.

Windows-like data model where int and long int are 32-bit, but long long int and pointer are
64-bit.

Quality of Implementation — a quality, behavior, functionality, or mechanism not required by
this standard, but which might be provided by systems conforming to it. Q-o-1 is often used
to describe the tool-chain-specific means by which a standard requirement is met.

Single Instruction Multiple Data — A term denoting or qualifying: (a) processing several data
items in parallel under the control of one instruction; (b) the ARM v8 SIMD instruction set:
(c) the register set shared by (b) and the ARMv8 floating point instruction set.

The ARM architecture’s SIMD and Floating Point architecture comprising the floating point
instruction set, the SIMD instruction set and the register set shared by them.

The instruction set named Thumb in the ARMv7 architecture; T32 uses 16-bit and 32-bit
instructions.

This document uses the following terms and abbreviations.

Term

Routine,
subroutine

Procedure
Function

Activation stack,
call-frame stack

Activation record,
call frame

PIC, PID

Argument,
Parameter

Externally visible
[interface]

Variadic routine

ARM IHI 0055C_beta

Meaning

A fragment of program to which control can be transferred that, on completing its task,
returns control to its caller at an instruction following the call. Routine is used for clarity
where there are nested calls: a routine is the caller and a subroutine is the callee.

A routine that returns no result value.
A routine that returns a result value.

The stack of routine activation records (call frames).

The memory used by a routine for saving registers and holding local variables (usually
allocated on a stack, once per activation of the routine).

Position-independent code, position-independent data.

The terms argument and parameter are used interchangeably. They may denote a formal
parameter of a routine given the value of the actual parameter when the routine is called,
or an actual parameter, according to context.

[An interface] between separately compiled or separately assembled routines.

A routine is variadic if the number of arguments it takes, and their type, is determined by
the caller instead of the callee.

Copyright © 2010-2013 ARM Limited. All rights reserved. Page 6 of 34

Procedure Call Standard for the ARM 64-bit Architecture

Global register A register whose value is neither saved nor destroyed by a subroutine. The value may be
updated, but only in a manner defined by the execution environment.

Program state The state of the program’s memory, including values in machine registers.

Scratch register, A register used to hold an intermediate value during a calculation (usually, such values

temporary are not named in the program source and have a limited lifetime). If a function needs to

register, Caller- preserve the value held in such a register over a call to another function, then the calling
saved register function must save and restore the value.

Callee-saved A register whose value must be preserved over a function call. If the function being called

register (the callee) needs to use the register, then it is responsible for saving and restoring the
old value.

SysV Unix System V. A variant of the Unix Operating System. Although this specification
refers to SysV, many other operating systems, such as Linux or BSD use similar
conventions.

Platform A program execution environment such as that defined by an operating system or run-

time environment. A platform defines the specific variant of the ABI and may impose
additional constraints. Linux is a platform in this sense.

More specific terminology is defined when it is first used.

1.4 Your licence to use this specification

IMPORTANT: THIS IS A LEGAL AGREEMENT (“LICENCE”) BETWEEN YOU (AN INDIVIDUAL OR SINGLE ENTITY WHO IS
RECEIVING THIS DOCUMENT DIRECTLY FROM ARM LIMITED) (“LICENSEE”) AND ARM LIMITED (“ARM”) FOR THE
SPECIFICATION DEFINED IMMEDITATELY BELOW. BY DOWNLOADING OR OTHERWISE USING IT, YOU AGREE TO BE
BOUND BY ALL OF THE TERMS OF THIS LICENCE. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE
THIS SPECIFICATION.

“Specification” means, and is limited to, the version of the specification for the Applications Binary Interface for the
ARM Architecture comprised in this document. Notwithstanding the foregoing, “Specification” shall not include (i)
the implementation of other published specifications referenced in this Specification; (ii) any enabling technologies
that may be necessary to make or use any product or portion thereof that complies with this Specification, but are
not themselves expressly set forth in this Specification (e.g. compiler front ends, code generators, back ends,
libraries or other compiler, assembler or linker technologies; validation or debug software or hardware;
applications, operating system or driver software; RISC architecture; processor microarchitecture); (iii) maskworks
and physical layouts of integrated circuit designs; or (iv) RTL or other high level representations of integrated
circuit designs.

Use, copying or disclosure by the US Government is subject to the restrictions set out in subparagraph (c)(1)(ii) of
the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and
(2) of the Commercial Computer Software — Restricted Rights at 48 C.F.R. 52.227-19, as applicable.

This Specification is owned by ARM or its licensors and is protected by copyright laws and international copyright
treaties as well as other intellectual property laws and treaties. The Specification is licensed not sold.

1. Subject to the provisions of Clauses 2 and 3, ARM hereby grants to LICENSEE, under any intellectual
property that is (i) owned or freely licensable by ARM without payment to unaffiliated third parties and (i)
either embodied in the Specification or Necessary to copy or implement an applications binary interface
compliant with this Specification, a perpetual, non-exclusive, non-transferable, fully paid, worldwide limited
licence (without the right to sublicense) to use and copy this Specification solely for the purpose of
developing, having developed, manufacturing, having manufactured, offering to sell, selling, supplying or
otherwise distributing products which comply with the Specification.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 7 of 34

Procedure Call Standard for the ARM 64-bit Architecture

2. THIS SPECIFICATION IS PROVIDED "AS I1S" WITH NO WARRANTIES EXPRESS, IMPLIED OR STATUTORY,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF SATISFACTORY QUALITY, MERCHANTABILITY,
NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE. THE SPECIFICATION MAY INCLUDE
ERRORS. ARM RESERVES THE RIGHT TO INCORPORATE MODIFICATIONS TO THE SPECIFICATION IN
LATER REVISIONS OF IT, AND TO MAKE IMPROVEMENTS OR CHANGES IN THE SPECIFICATION OR THE
PRODUCTS OR TECHNOLOGIES DESCRIBED THEREIN AT ANY TIME.

3. This Licence shall immediately terminate and shall be unavailable to LICENSEE if LICENSEE or any party
affiliated to LICENSEE asserts any patents against ARM, ARM affiliates, third parties who have a valid
licence from ARM for the Specification, or any customers or distributors of any of them based upon a
claim that a LICENSEE (or LICENSEE affiliate) patent is Necessary to implement the Specification. In this
Licence; (i) “affiliate” means any entity controlling, controlled by or under common control with a party (in
fact or in law, via voting securities, management control or otherwise) and “affiliated” shall be construed
accordingly; (ii) “assert” means to allege infringement in legal or administrative proceedings, or
proceedings before any other competent trade, arbitral or international authority; (iii) “Necessary” means
with respect to any claims of any patent, those claims which, without the appropriate permission of the
patent owner, will be infringed when implementing the Specification because no alternative, commercially
reasonable, non-infringing way of implementing the Specification is known; and (iv) English law and the
jurisdiction of the English courts shall apply to all aspects of this Licence, its interpretation and
enforcement. The total liability of ARM and any of its suppliers and licensors under or in relation to this
Licence shall be limited to the greater of the amount actually paid by LICENSEE for the Specification or
US$10.00. The limitations, exclusions and disclaimers in this Licence shall apply to the maximum extent
allowed by applicable law.

ARM Contract reference LEC-ELA-00081 V2.0 AB/LS (9 March 2005)

1.5 Acknowledgements

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 8 of 34

Procedure Call Standard for the ARM 64-bit Architecture

2 SCOPE

The AAPCS64 defines how subroutines can be separately written, separately compiled, and separately
assembled to work together. It describes a contract between a calling routine and a called routine, or between a
routine and its execution environment, that defines:

O Obligations on the caller to create a program state in which the called routine may start to execute.

O Obligations on the called routine to preserve the program state of the caller across the call.

O The rights of the called routine to alter the program state of its caller.

O Obligations on all routines to preserve certain global invariants.

This standard specifies the base for a family of Procedure Call Standard (PCS) variants generated by choices that
reflect arbitrary, but historically important, choice among:

O Byte order.

O Size and format of data types: pointer, long int and wchar_t and the format of half-precision floating-point
values. Here we define three data models (see sections 6 and 7 for details):

o ILP32: SysV-like variant where int, long int and pointer are 32-bit
o LP64: SysV-like variant where int is 32-bit, but long int and pointer are 64-bit.
o LLP64: Windows-like variant where int and long int are 32-bit, but long long int and pointer are 64-
bit.
O Whether floating-point operations use floating-point hardware resources or are implemented by calls to
integer-only routines’.
This standard is presented in four sections that, after an introduction, specify:
O The layout of data.
O Layout of the stack and calling between functions with public interfaces.

O Variations available for processor extensions, or when the execution environment restricts the addressing
model.

O The C and C++ language bindings for plain data types.
This specification does not standardize the representation of publicly visible C++-language entities that are not

also C language entities (these are described in CPPABI64) and it places no requirements on the representation of
language entities that are not visible across public interfaces.

! This base standard requires that AArch64 floating-point resources be used by floating-point operations and floating-point
parameter passing. However, it is acknowledged that operating system code often prefers not to perturb the floating-point state
of the machine and to implement its own limited use of floating-point in integer-only code: such code is permitted, but not
conforming.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 9 of 34

Procedure Call Standard for the ARM 64-bit Architecture

3 INTRODUCTION

The AAPCS64 is the first revision of Procedure Call standard for the ARM 64-bit Architecture. It forms part of the
complete ABI specification for the ARM 64-bit Architecture.

3.1 Design Goals

The goals of the AAPCS64 are to:

O Support efficient execution on high-performance implementations of the ARM 64-bit Architecture.
O Clearly distinguish between mandatory requirements and implementation discretion.

3.2 Conformance

The AAPCS64 defines how separately compiled and separately assembled routines can work together. There is
an externally visible interface between such routines. It is common that not all the externally visible interfaces to
software are intended to be publicly visible or open to arbitrary use. In effect, there is a mismatch between the
machine-level concept of external visibility —defined rigorously by an object code format—and a higher level,
application-oriented concept of external visibility—which is system-specific or application-specific.

Conformance to the AAPCS64 requires that':

O At all times, stack limits and basic stack alignment are observed (§5.2.2.1 Universal stack constraints).

O At each call where the control transfer instruction is subject to a BL-type relocation at static link time, rules on
the use of IPO and IP1 are observed (§5.3.1.1 Use of IPO and IP1 by the linker).

O The routines of each publicly visible interface conform to the relevant procedure call standard variant.
O The data elements® of each publicly visible interface conform to the data layout rules.

! This definition of conformance gives maximum freedom to implementers. For example, if it is known that both sides of an
externally visible interface will be compiled by the same compiler, and that the interface will not be publicly visible, the AAPCS64
permits the use of private arrangements across the interface such as using additional argument registers or passing data in
non-standard formats. Stack invariants must, nevertheless, be preserved because an AAPCS64-conforming routine elsewhere
in the call chain might otherwise fail. Rules for use of IPO and IP1 must be obeyed or a static linker might generate a non-
functioning executable program.

Conformance at a publicly visible interface does not depend on what happens behind that interface. Thus, for example, a tree
of non-public, non-conforming calls can conform because the root of the tree offers a publicly visible, conforming interface and
the other constraints are satisfied.

2 Data elements include: parameters to routines named in the interface, static data named in the interface, and all data
addressed by pointers passed across the interface.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 10 of 34

Procedure Call Standard for the ARM 64-bit Architecture

4 DATA TYPES AND ALIGNMENT

4.1 Fundamental Data Types

Table 1, Byte size and byte alignment of fundamental data types shows the fundamental data types (Machine
Types) of the machine.

Bvte Natural
Type Class Machine Type y Alignment | Note
size
(bytes)
Integral Unsigned byte 1 1 Character
Signed byte 1 1
Unsigned half-word 2 2
Signed half-word 2 2
Unsigned word 4 4
Signed word 4 4
Unsigned double- 8 8
word
Signed double-word 8 8
Unsigned quad-word 16 16
Signed quad-word 16 16
Floating Point | Half precision 2 2 See §4.1.1, Half-precision Floating Point.
Single precision 4 4
Double precision 8 8 IEEE 754-2008
Quad precision 16 16
Short vector 64-bit vector 8 8
See §4.1.2, Short Vectors.
128-bit vector 16 16
Pointer 32-bit data pointer 4 4
32-bit code pointer 4 4
See §4.1.3, Pointers.
64-bit data pointer 8 8
64-bit code pointer 8 8

Table 1, Byte size and byte alignment of fundamental data types

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 11 of 34

Procedure Call Standard for the ARM 64-bit Architecture

4.1.1 Half-precision Floating Point

The architecture provides hardware support for half-precision values. Two formats are currently supported: the
format specified in IEEE 754-2008 and an Alternative format that provides additional range but has no NaNs or
Infinities. This base standard of the AAPCS64 specifies two variants:

O The SysV-like variants use the IEEE 754-2008 defined format.
O The Windows-like variant uses ...[TBC]

4.1.2 Short Vectors

A short vector is a machine type that is composed of repeated instances of one fundamental integral or floating-
point type. It may be 8 or 16 bytes in total size. A short vector has a base type that is the fundamental integral or
floating-point type from which it is composed, but its alignment is always the same as its total size. The number of
elements in the short vector is always such that the type is fully packed. For example, an 8-byte short vector may
contain 8 unsigned byte elements, 4 unsigned half-word elements, 2 single-precision floating-point elements, or
any other combination where the product of the number of elements and the size of an individual element is equal
to 8. Similarly, for 16-byte short vectors the product of the number of elements and the size of the individual
elements must be 16.

Elements in a short vector are numbered such that the lowest numbered element (element 0) occupies the lowest
numbered bit (bit zero) in the vector and successive elements take on progressively increasing bit positions in the
vector. When a short vector transferred between registers and memory it is treated as an opaque object. That is
a short vector is stored in memory as if it were stored with a single STR of the entire register; a short vector is
loaded from memory using the corresponding LDR instruction. On a little-endian system this means that element 0
will always contain the lowest addressed element of a short vector; on a big-endian system element 0 will contain
the highest-addressed element of a short vector.

A language binding may define extended types that map directly onto short vectors. Short vectors are not
otherwise created spontaneously (for example because a user has declared an aggregate consisting of eight
consecutive byte-sized objects).

4.1.3 Pointers

Code and data pointers are either 64-bit or 32-bit unsigned types1. A NULL pointer is always represented by all-
bits-zero.

All 64 bits in a 64-bit pointer are always significant. When tagged addressing is enabled, a tag is part of a pointer’s
value for the purposes of pointer arithmetic. The result of subtracting or comparing two pointers with different tags
is unspecified. See also §5.2.1, below. A 32-bit pointer does not support tagged addressing.

Note The A64 load and store instructions always use the full 64-bit base register and perform a 64-bit address
calculation. Care must be taken within ILP32 to ensure that the upper 32 bits of a base register are zero
and 32-bit register offsets are sign-extended to 64 bits (immediate offsets are implicitly extended).

4.2 Byte Order (“Endianness”)

From a software perspective, memory is an array of bytes, each of which is addressable.
This ABI supports two views of memory implemented by the underlying hardware.

O In alittle-endian view of memory the least significant byte of a data object is at the lowest byte address the
data object occupies in memory.

O In a big-endian view of memory the least significant byte of a data object is at the highest byte address the
data object occupies in memory.

! The distinction between code and data pointers is carried forward from the AArch32 PCS where bit[0] of a code pointer
determines the target instruction set state, A32 or T32. The presence of an ISA selection bit within a code pointer can require
distinct handling within a tool chain, compared to data pointer.

ISA selection does not exist within AArch64 state, where bits[1:0] of a code pointer must be zero.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 12 of 34

Procedure Call Standard for the ARM 64-bit Architecture

The least significant bit in an object is always designated as bit 0.

The mapping of a word-sized data object to memory is shown in Figure 1, Memory layout of big-endian data
object and Figure 2, Memory layout of little-endian data object. All objects are pure-endian, so the mappings may
be scaled accordingly for larger or smaller objects1.

a1 Object 0 Memory
MSB LSB > M+3
> M+2
> M+1
> M+0

Figure 1, Memory layout of big-endian data object

Object Memory
> M+3
> M+2
> M+1
MSB LSB > M+0
31 0

Figure 2, Memory layout of little-endian data object

4.3 Composite Types
A Composite Type is a collection of one or more Fundamental Data Types that are handled as a single entity at
the procedure call level. A Composite Type can be any of:

O An aggregate, where the members are laid out sequentially in memory (possibly with inter-member padding)
O A union, where each of the members has the same address
O An array, which is a repeated sequence of some other type (its base type).

The definitions are recursive; that is, each of the types may contain a Composite Type as a member.

4.3.1 Aggregates

O The alignment of an aggregate shall be the alignment of its most-aligned member.

O The size of an aggregate shall be the smallest multiple of its alignment that is sufficient to hold all of its
members.

' The underlying hardware may not directly support a pure-endian view of data objects that are not naturally aligned.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 13 of 34

Procedure Call Standard for the ARM 64-bit Architecture

4.3.2 Unions

O The alignment of a union shall be the alignment of its most-aligned member.
O The size of a union shall be the smallest multiple of its alignment that is sufficient to hold its largest member.

4.3.3 Arrays

O The alignment of an array shall be the alignment of its base type.
O The size of an array shall be the size of the base type multiplied by the number of elements in the array.

4.3.4 Bit-fields

A member of an aggregate that is a Fundamental Data Type may be subdivided into bit-fields; if there are unused
portions of such a member that are sufficient to start the following member at its Natural Alignment then the
following member may use the unallocated portion. For the purposes of calculating the alignment of the
aggregate the type of the member shall be the Fundamental Data Type upon which the bit-field is based." The
layout of bit-fields within an aggregate is defined by the appropriate language binding.

4.3.5 Homogeneous Aggregates

An Homogeneous Aggregate is a Composite Type where all of the Fundamental Data Types of the members that
compose the type are the same. The test for homogeneity is applied after data layout is completed and without
regard to access control or other source language restrictions. Note that for short-vector types the fundamental
types are 64-bit vector and 128-bit vector; the type of the elements in the short vector does not form part of the
test for homogeneity.

An Homogeneous Aggregate has a Base Type, which is the Fundamental Data Type of each Member. The
overall size is the size of the Base Type multiplied by the number uniquely addressable Members; its alignment
will be the alignment of the Base Type.

4.3.5.1 Homogeneous Floating-point Aggregates (HFA)
An Homogeneous Floating-point Aggregate (HFA) is an Homogeneous Aggregate with a Fundamental Data Type
that is a Floating-Point type and at most four uniquely addressable members.

4.3.5.2 Homogeneous Short-Vector Aggregates (HVA)

An Homogeneous Short-Vector Aggregate (HVA) is an Homogeneous Aggregate with a Fundamental Data Type
that is a Short-Vector type and at most four uniquely addressable members.

' The intent is to permit the C construct struct {int a:8; char b[7];} to have size 8 and alignment 4.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 14 of 34

Procedure Call Standard for the ARM 64-bit Architecture

5 THE BASE PROCEDURE CALL STANDARD

The base standard defines a machine-level calling standard for the A64 instruction set. It assumes the availability
of the vector registers for passing floating-point and SIMD arguments. Application code is expected to conform to
one of three data models defined in this standard; ILP32, LP64 or LLP64.

5.1 Machine Registers

The ARM 64-bit architecture defines two mandatory register banks: a general-purpose register bank which can be
used for scalar integer processing and pointer arithmetic; and a SIMD and Floating-Point register bank.

5.1.1 General-purpose Registers

There are thirty-one, 64-bit, general-purpose (integer) registers visible to the A64 instruction set; these are labeled
r0-r30. In a 64-bit context these registers are normally referred to using the names x0-x30; in a 32-bit context the
registers are specified by using w0-w30. Additionally, a stack-pointer register, SP, can be used with a restricted
number of instructions. Register names may appear in assembly language in either upper case or lower case. In
this specification upper case is used when the register has a fixed role in this procedure call standard. Table 2,
General purpose registers and AAPCS64 usage summarizes the uses of the general-purpose registers in this
standard. In addition to the general-purpose registers there is one status register (NZCV) that may be set and
read by conforming code.

Register | Special Role in the procedure call standard
SP The Stack Pointer.
r30 LR The Link Register.
r29 FP The Frame Pointer

r19...r28 Callee-saved registers

The Platform Register, if needed; otherwise a temporary register.

r8 See notes.

The second intra-procedure-call temporary register (can be used
r17 IP1 by call veneers and PLT code); at other times may be used as a
temporary register.

The first intra-procedure-call scratch register (can be used by call
ri6 IPO veneers and PLT code); at other times may be used as a
temporary register.

r9...r15 Temporary registers
r8 Indirect result location register
r0...r7 Parameter/result registers

Table 2, General purpose registers and AAPCS64 usage

The first eight registers, r0-r7, are used to pass argument values into a subroutine and to return result values from
a function. They may also be used to hold intermediate values within a routine (but, in general, only between
subroutine calls).

Registers r16 (IP0) and r17 (IP1) may be used by a linker as a scratch register between a routine and any
subroutine it calls (for details, see §5.3.1.1, Use of IPO and IP1 by the linker). They can also be used within a
routine to hold intermediate values between subroutine calls.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 15 of 34

Procedure Call Standard for the ARM 64-bit Architecture

The role of register r18 is platform specific. If a platform ABI has need of a dedicated general purpose register to
carry inter-procedural state (for example, the thread context) then it should use this register for that purpose. If the
platform ABI has no such requirements, then it should use r18 as an additional temporary register. The platform
ABI specification must document the usage for this register.

Note Software developers creating platform-independent code are advised to avoid using r18 if at all possible.
Most compilers provide a mechanism to prevent specific registers from being used for general allocation;
portable hand-coded assembler should avoid it entirely. It should not be assumed that treating the
register as callee-saved will be sufficient to satisfy the requirements of the platform. Virtualization code
must, of course, treat the register as they would any other resource provided to the virtual machine.

A subroutine invocation must preserve the contents of the registers r19-r29 and SP. All 64 bits of each value
stored in r19-r29 must be preserved, even when using the ILP32 data model.

In all variants of the procedure call standard, registers r16, r17, r29 and r30 have special roles. In these roles they
are labeled IPO, IP1, FP and LR when being used for holding addresses (that is, the special name implies
accessing the register as a 64-bit entity).

Note The special register names (IPO, IP1, FP and LR) should be used only in the context in which they are
special. Itis recommended that disassemblers always use the architectural names for the registers.

The NZCV register is a global condition flag register with the following properties:
O TheN, Z, CandV flags are undefined on entry to and return from a public interface.

5.1.2 SIMD and Floating-Point Registers

The ARM 64-bit architecture also has a further thirty-two registers, v0-v31, which can be used by SIMD and
Floating-Point operations. The precise name of the register will change indicating the size of the access.

Note Unlike in AArch32, in AArch64 the 128-bit and 64-bit views of a SIMD and Floating-Point register do not
overlap multiple registers in a narrower view, so q1, d1 and s1 all refer to the same entry in the register
bank.

The first eight registers, v0-v7, are used to pass argument values into a subroutine and to return result values from
a function. They may also be used to hold intermediate values within a routine (but, in general, only between
subroutine calls).

Registers v8-v15 must be preserved by a callee across subroutine calls; the remaining registers (v0-v7, v16-v31)
do not need to be preserved (or should be preserved by the caller). Additionally, only the bottom 64 bits of each
value stored in v8-v15 need to be preserved1; it is the responsibility of the caller to preserve larger values.

The FPSR is a status register that holds the cumulative exception bits of the floating-point unit. It contains the
fields IDC, IXC, UFC, OFC, DZC, IOC and QC. These fields are not preserved across a public interface and may
have any value on entry to a subroutine.

The FPCR is used to control the behavior of the floating-point unit. It is a global register with the following
properties.

O The exception-control bits (8-12), rounding mode bits (22-23) and flush-to-zero bits (24) may be modified by
calls to specific support functions that affect the global state of the application.

O All other bits are reserved and must not be modified. It is not defined whether the bits read as zero or one, or
whether they are preserved across a public interface.

5.2 Processes, Memory and the Stack

The AAPCS64 applies to a single thread of execution or process (hereafter referred to as a process). A process
has a program state defined by the underlying machine registers and the contents of the memory it can access.
The memory a process can access, without causing a run-time fault, may vary during the execution of the
process.

The memory of a process can normally be classified into five categories:

' This includes double-precision or smaller floating-point values and 64-bit short vector values

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 16 of 34

Procedure Call Standard for the ARM 64-bit Architecture

code (the program being executed), which must be readable, but need not be writable, by the process.
read-only static data.

writable static data.

the heap.

the stack.

Oo0Oo0ooano

Writable static data may be further sub-divided into initialized, zero-initialized and uninitialized data. Except for the
stack there is no requirement for each class of memory to occupy a single contiguous region of memory. A
process must always have some code and a stack, but need not have any of the other categories of memory.

The heap is an area (or areas) of memory that are managed by the process itself (for example, with the Cmalloc
function). It is typically used for the creation of dynamic data objects.

A conforming program must only execute instructions that are in areas of memory designated to contain code.

5.2.1 Memory Addresses

The address space may consist of one or more disjoint regions. No region may span address zero (although one
region may start at zero).

The use of tagged addressing is platform specific and does not apply to 32-bit pointers. When tagged addressing
is disabled all 64 bits of an address are passed to the translation system. When tagged addressing is enabled,
the top eight bits of an address are ignored for the purposes of address translation. See also §4.1.3, above.

5.2.2 The Stack

The stack is a contiguous area of memory that may be used for storage of local variables and for passing
additional arguments to subroutines when there are insufficient argument registers available.

The stack implementation is full-descending, with the current extent of the stack held in the special-purpose
register SP. The stack will, in general, have both a base and a limit though in practice an application may not be
able to determine the value of either.

The stack may have a fixed size or be dynamically extendable (by adjusting the stack-limit downwards).

The rules for maintenance of the stack are divided into two parts: a set of constraints that must be observed at all
times, and an additional constraint that must be observed at a public interface.

5.2.2.1 Universal stack constraints
At all times the following basic constraints must hold:
O Stack-limit < SP <= stack-base. The stack pointer must lie within the extent of the stack.

O A process may only access (for reading or writing) the closed interval of the entire stack delimited by
[SP, stack-base — 1].

Additionally, at any point at which memory is accessed via SP, the hardware requires that
O SP mod 16 =0. The stack must be quad-word aligned.

5.2.2.2 Stack constraints at a public interface
The stack must also conform to the following constraint at a public interface:
O SP mod 16 = 0. The stack must be quad-word aligned.

5.2.3 The Frame Pointer

Conforming code shall construct a linked list of stack-frames. Each frame shall link to the frame of its caller by
means of a frame record of two 64-bit values on the stack (independent of the data model). The frame record for
the innermost frame (belonging to the most recent routine invocation) shall be pointed to by the Frame Pointer
register (FP). The lowest addressed double-word shall point to the previous frame record and the highest
addressed double-word shall contain the value passed in LR on entry to the current function. The end of the
frame record chain is indicated by the address zero in the address for the previous frame. The location of the

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 17 of 34

Procedure Call Standard for the ARM 64-bit Architecture

frame record within a stack frame is not specified. Note: There will always be a short period during construction or
destruction of each frame record during which the frame pointer will point to the caller’s record.

A platform shall mandate the minimum level of conformance with respect to the maintenance of frame records.

The options are, in decreasing level of functionality:

O It may require the frame pointer to address a valid frame record at all times, except that small subroutines
which do not modify the link register may elect not to create a frame record

O It may require the frame pointer to address a valid frame record at all times, except that any subroutine may
elect not to create a frame record

O It may permit the frame pointer register to be used as a general-purpose callee-saved register, but provide a
platform-specific mechanism for external agents to reliably detect this condition

O It may elect not to maintain a frame chain and to use the frame pointer register as a general-purpose callee-
saved register.

5.3 Subroutine Calls

The A64 instruction set contains primitive subroutine call instructions, BL and BLR, which performs a branch-with-
link operation. The effect of executing BL is to transfer the sequentially next value of the program counter—the
return address—into the link register (LR) and the destination address into the program counter. The effect of
executing BLR is similar except that the new PC value is read from the specified register.

5.3.1.1 Use of IP0 and IP1 by the linker

The A64 branch instructions are unable to reach every destination in the address space, so it may be necessary
for the linker to insert a veneer between a calling routine and a called subroutine. Veneers may also be needed to
support dynamic linking. Any veneer inserted must preserve the contents of all registers except IPO, IP1 (r16, r17)
and the condition code flags; a conforming program must assume that a veneer that alters IPO and/or IP1 may be
inserted at any branch instruction that is exposed to a relocation that supports long branches.

Note R AARCH64 CALL26, and R_AARCH64 JuMP26 are the ELF relocation types with this property.

5.4 Parameter Passing

The base standard provides for passing arguments in general-purpose registers (r0-r7), SIMD/floating-point
registers (v0-v7) and on the stack. For subroutines that take a small number of small parameters, only registers
are used.

5.4.1 Variadic Subroutines

A Variadic subroutine is a routine that takes a variable number of parameters. The full parameter list is known by
the caller, but the callee only knows a minimum number of arguments will be passed and will determine the
additional arguments based on the values passed in other arguments. The two classes of arguments are known
as Named arguments (these form the minimum set) and Anonymous arguments (these are the optional additional
arguments).

In this standard a non-variadic subroutine can be considered to be identical to a variadic subroutine that takes no
optional arguments.

5.4.2 Parameter Passing Rules
Parameter passing is defined as a two-level conceptual model

O A mapping from the type of a source language argument onto a machine type
O The marshaling of machine types to produce the final parameter list

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 18 of 34

Procedure Call Standard for the ARM 64-bit Architecture

The mapping from a source language type onto a machine type is specific for each language and is described
separately (the C and C++ language bindings are described in §7, ARM C and C++ language mappings). The
result is an ordered list of arguments that are to be passed to the subroutine.

For a caller, sufficient stack space to hold stacked argument values is assumed to have been allocated prior to
marshaling: in practice the amount of stack space required cannot be known until after the argument marshaling
has been completed. A callee is permitted to modify any stack space used for receiving parameter values from
the caller.

Stage A — Initialization
This stage is performed exactly once, before processing of the arguments commences.
A.1 The Next General-purpose Register Number (NGRN) is set to zero.
A.2 The Next SIMD and Floating-point Register Number (NSRN) is set to zero.
A.3 The next stacked argument address (NSAA) is set to the current stack-pointer value (SP).

Stage B — Pre-padding and extension of arguments

For each argument in the list the first matching rule from the following list is applied. If no rule matches the
argument is used unmodified.

B.1 If the argument type is a Composite Type whose size cannot be statically determined by both the caller
and the callee, the argument is copied to memory and the argument is replaced by a pointer to the copy.
(There are no such types in C/C++ but they exist in other languages or in language extensions).

B.2 If the argument type is an HFA or an HVA, then the argument is used unmodified.

B.3 If the argument type is a Composite Type that is larger than 16 bytes, then the argument is copied to
memory allocated by the caller and the argument is replaced by a pointer to the copy.

B.4 If the argument type is a Composite Type then the size of the argument is rounded up to the nearest
multiple of 8 bytes.

Stage C — Assignment of arguments to registers and stack

For each argument in the list the following rules are applied in turn until the argument has been allocated. When
an argument is assigned to a register any unused bits in the register have unspecified value. When an argument is
assigned to a stack slot any unused padding bytes have unspecified value.

C.1 If the argument is a Half-, Single-, Double- or Quad- precision Floating-point or Short Vector Type and
the NSRN is less than 8, then the argument is allocated to the least significant bits of register vINSRN].
The NSRN is incremented by one. The argument has now been allocated.

C.2 Ifthe argument is an HFA or an HVA and there are sufficient unallocated SIMD and Floating-point
registers (NSRN + number of members < 8), then the argument is allocated to SIMD and Floating-point
Registers (with one register per member of the HFA or HVA). The NSRN is incremented by the number
of registers used. The argument has now been allocated.

C.3 If the argumentis an HFA or an HVA then the NSRN is set to 8 and the size of the argument is rounded
up to the nearest multiple of 8 bytes.

C.4 Ifthe argument is an HFA, an HVA, a Quad-precision Floating-point or Short Vector Type then the
NSAA is rounded up to the larger of 8 or the Natural Alignment of the argument’s type.

C.5 If the argument is a Half- or Single- precision Floating Point type, then the size of the argument is set to
8 bytes. The effect is as if the argument had been copied to the least significant bits of a 64-bit register
and the remaining bits filled with unspecified values.

C.6 If the argument is an HFA, an HVA, a Half-, Single-, Double- or Quad- precision Floating-point or Short
Vector Type, then the argument is copied to memory at the adjusted NSAA. The NSAA is incremented
by the size of the argument. The argument has now been allocated.

C.7 Ifthe argument is an Integral or Pointer Type, the size of the argument is less than or equal to 8 bytes
and the NGRN is less than 8, the argument is copied to the least significant bits in xfNGRN]. The NGRN
is incremented by one. The argument has now been allocated.

C.8 If the argument has an alignment of 16 then the NGRN is rounded up to the next even number.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 19 of 34

Procedure Call Standard for the ARM 64-bit Architecture

C.9 Ifthe argument is an Integral Type, the size of the argument is equal to 16 and the NGRN is less than 7,
the argument is copied to XINGRN] and xiINGRN+1]. x[NGRN] shall contain the lower addressed
double-word of the memory representation of the argument. The NGRN is incremented by two. The
argument has now been allocated.

C.10 If the argument is a Composite Type and the size in double-words of the argument is not more than 8
minus NGRN, then the argument is copied into consecutive general-purpose registers, starting at
X[NGRN]. The argument is passed as though it had been loaded into the registers from a double-word-
aligned address with an appropriate sequence of LDR instructions loading consecutive registers from
memory (the contents of any unused parts of the registers are unspecified by this standard). The NGRN
is incremented by the number of registers used. The argument has now been allocated.

C.11 The NGRN is set to 8.
C.12 The NSAA is rounded up to the larger of 8 or the Natural Alignment of the argument’s type..

C.13 If the argument is a composite type then the argument is copied to memory at the adjusted NSAA. The
NSAA is incremented by the size of the argument. The argument has now been allocated.

C.14 If the size of the argument is less than 8 bytes then the size of the argument is set to 8 bytes. The effect
is as if the argument was copied to the least significant bits of a 64-bit register and the remaining bits
filled with unspecified values.

C.15 The argument is copied to memory at the adjusted NSAA. The NSAA is incremented by the size of the
argument. The argument has now been allocated.

It should be noted that the above algorithm makes provision for languages other than C and C++ in that it provides
for passing arrays by value and for passing arguments of dynamic size. The rules are defined in a way that allows
the caller to be always able to statically determine the amount of stack space that must be allocated for arguments
that are not passed in registers, even if the routine is variadic.

Several further observations can also be made:

O The address of the first stacked argument is defined to be the initial value of SP. Therefore, the total amount
of stack space needed by the caller for argument passing cannot be determined until all the arguments in the
list have been processed.

O Floating-point and short vector types are passed in SIMD and Floating-point registers or on the stack; never in
general-purpose registers (except when they form part of a small structure that is neither an HFA nor an
HVA).

O Unlike in the 32-bit AAPCS, named integral values must be narrowed by the callee rather than the caller.

O Unlike in the 32-bit AAPCS, half-precision floating-point values can be passed directly (and HFAs of half-
precision floats are also permitted).

O Any part of a register or a stack slot that is not used for an argument (padding bits) has unspecified content at
the callee entry point.

O The rules here do not require narrow arguments to subroutines to be widened. However a language may
require widening in some or all circumstances (for example, in C, unprototyped and variadic functions require
single-precision values to be converted to double-precision and char and short values to be converted to int.

O HFAs and HVAs are special cases of a composite type. If they are passed as parameters in registers then
each uniquely addressable element goes in its own register. However, if they are not allocated to registers
then they are always passed on the stack (never in general-purpose registers) and they are laid out in exactly
the same way as any other composite.

O Both before and after the layout of each argument, then NSAA will have a minimum alignment of 8.

5.5 Result Return

The manner in which a result is returned from a function is determined by the type of that result:
O If the type, T, of the result of a function is such that
void func (T arg)

would require that arg be passed as a value in a register (or set of registers) according to the rules in §5.4
Parameter Passing, then the result is returned in the same registers as would be used for such an argument.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 20 of 34

Procedure Call Standard for the ARM 64-bit Architecture

O Otherwise, the caller shall reserve a block of memory of sufficient size and alignment to hold the result. The
address of the memory block shall be passed as an additional argument to the function in x8. The callee may
modify the result memory block at any point during the execution of the subroutine (there is no requirement for
the callee to preserve the value stored in x8).

5.6 Interworking

Interworking between the 32-bit AAPCS and the AAPCS64 is not supported within a single process. (In AArch64,
all inter-operation between 32-bit and 64-bit machine states takes place across a change of exception level).

Interworking between data model variants of AAPCS64 (although technically possible) is not defined within a
single process.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 21 of 34

Procedure Call Standard for the ARM 64-bit Architecture

6 THE STANDARD VARIANTS

6.1 Half-precision Format Compatibility

The set of values that can be represented in Alternative format differs from the set that can be represented in
IEEE754-2008 format rendering code built to use either format incompatible with code that uses the other. Never-
the-less, most code will make no use of either format and will therefore be compatible with both variants.

6.2 Sizeof(long), sizeof(wchar_t), pointers

See section 7.1.2

6.3 Size_t, ptrdiff_t

See section 7.1.4

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 22 of 34

Procedure Call Standard for the ARM 64-bit Architecture

7 ARM C AND C++ LANGUAGE MAPPINGS

This section describes how ARM compilers map C language features onto the machine-level standard. To the
extent that C++ is a superset of the C language it also describes the mapping of C++ language features.

71

Data Types

7.1.1 Arithmetic Types

The mapping of C arithmetic types to Fundamental Data Types is shown in Table 3, Mapping of C & C++ built-in
data types.

C/C++ Type

Machine Type

Notes

char

unsigned byte

unsigned char

unsigned byte

signed char

signed byte

[signed] short

signed halfword

unsigned short

unsigned halfword

[signed] int

signed word

unsigned int

unsigned word

signed word or signed double-

[signed] long word See Table 4

unsigned long unsigned word or unsigned See Table 4
double-word

[signed] long long signed double-word C99 Only

unsigned long long unsigned double-word C99 Only

__intl128 signed quad-word ARM extension (used for LDXP/STXP)
__uint128 unsigned quad-word ARM extension (used for LDXP/STXP)
__fplé fhoeilrlziec(:riSAifl)tre‘:r(rlmEtI?\I/EeZg:)‘r;rQnoa(i? ARM extension. See Table 4

float single precision (IEEE 754)

double double precision (IEEE 754)

long double

quad precision (IEEE 754-
2008)

_Imaginary

2008)

float Imaginary single precision (IEEE 754) C99 Only
double _Imaginary double precision (IEEE 754) C99 Only
1 1 isi -

ong double quad precision (IEEE 754 C99 Only

ARM IHI 0055C_beta

Copyright © 2010-2013 ARM Limited. All rights reserved.

Page 23 of 34

Procedure Call Standard for the ARM 64-bit Architecture

C/C++ Type

Machine Type

Notes

float Complex

2 single precision (IEEE 754)

C99 Only. Layout is
struct {float re;
float im;};

double Complex

2 double precision (IEEE 754)

C99 Only. Layout is
struct {double re;
double im;};

long double Complex

2 quad precision (IEEE 754-
2008)

C99 Only. Layout is
struct {long double re;
long double im;};

_Bool/bool

unsigned byte

C99/C++ Only. False has value 0 and
True has value 1.

wchar t

unsigned halfword or unsigned
word

built-in in C++, typedef in C, type is
platform specific; See Table 4

Table 3, Mapping of C & C++ built-in data types

A platform ABI may specify a different combination of primitive variants but we discourage this.

7.1.2 Types Varying by Data Model

The C/C++ arithmetic and pointer types whose machine type depends on the data model are shown in Table 4,
C/C++ type variants by data model.

A C++ reference type is implemented as a data pointer to the type.

C/C++ Type

Machine Type

Notes

ILP32

LP64

LLP64

[signed] long

signed word

signed double-word

signed word

unsigned long

unsigned word

unsigned double-
word

unsigned word

IEEE754-2008 half-

IEEE754-2008 half-

TBC:

— P8 precision format precision format Alternative Format LLP64 Alternate format?
wchar_t unsigned word unsigned word unsigned halfword

T * 32-bit data pointer 64-bit data pointer 64-bit data pointer Any data type T

T (*F) () 32-bit code pointer | 64-bit code pointer | 64-bit code pointer | Any function type F

T& 32-bit data pointer 64-bit data pointer 64-bit data pointer C++ reference

ARM IHI 0055C_beta

Table 4, C/C++ type variants by data model

Copyright © 2010-2013 ARM Limited. All rights reserved.

Page 24 of 34

Procedure Call Standard for the ARM 64-bit Architecture

7.1.3 Enumerated Types

The type of the storage container for an enumerated type is a word (int or unsigned int) for all enumeration
types. The container type shall be unsigned int unless thatis unable to represent all the declared values in the
enumerated type.

If the set of values in an enumerated type cannot be represented using either int or unsigned int asa
container type, and the language permits extended enumeration sets, then a 1ong long or unsigned long
long container may be used. If all values in the enumeration are in the range of unsigned long long, then the
container type is unsigned long long, otherwise the container type is long long.

The size and alignment of an enumeration type shall be the size and alignment of the container type.
If a negative number is assigned to an unsigned container the behavior is undefined.

7.1.4 Additional Types

Both C and C++ require that a system provide additional type definitions that are defined in terms of the base
types as shown in Table 5, Additional data types. Normally these types are defined by inclusion of the appropriate
header file. However, in C++ the underlying type of size t can be exposed without the use of any header files
simply by using : : operator new ().

Typedef ILP32 LP64 LLP64
size t unsigned long unsigned long unsigned long long
ptrdiff t signed long signed long signed long long

Table 5, Additional data types

7.1.5 Definition of va_list

The definition of va_1ist has implications for the internal implementation in the compiler. An AAPCS64
conforming object must use the definitions shown in Error! Reference source not found..

Typedef Base type Notes

struct va list {
void * stack;

/ A va 1list may address any object in a parameter list. In
void * gr top; -

va list A C++, va listisinnamespace std. See Appendix B
void * vr top; g = .
int _ gr offs; Variable Argument Lists.
int ~ vr offs; }

Table 6, Definition of va_list

7.1.6 Volatile Data Types

A data type declaration may be qualified with the volatile type qualifier. The compiler may not remove any
access to a volatile data type unless it can prove that the code containing the access will never be executed;
however, a compiler may ignore a volatile qualification of an automatic variable whose address is never taken
unless the function calls setjmp (). A volatile qualification on a structure or union shall be interpreted as applying
the qualification recursively to each of the fundamental data types of which it is composed. Access to a volatile-
qualified fundamental data type must always be made by accessing the whole type.

The behavior of assigning to or from an entire structure or union that contains volatile-qualified members is
undefined. Likewise, the behavior is undefined if a cast is used to change either the qualification or the size of the

type.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 25 of 34

Procedure Call Standard for the ARM 64-bit Architecture

The memory system underlying the processor may have a restricted bus width to some or all of memory. The only
guarantee applying to volatile types in these circumstances are that each byte of the type shall be accessed
exactly once for each access mandated above, and that any bytes containing volatile data that lie outside the type
shall not be accessed. Nevertheless, a compiler shall use an instruction that will access the type exactly.

7.1.7 Structure, Union and Class Layout

Structures and unions are laid out according to the Fundamental Data Types of which they are composed (see
§4.3, Composite Types). All members are laid out in declaration order. Additional rules applying to C++ non-POD
class layout are described in CPPABI64.

7.1.8 Bit-fields

A bit-field may have any integral type (including enumerated and bool types).
A sequence of bit-fields is laid out in the order declared using the rules below.
For each bit-field, the type of its container is:

O Its declared type if its size is no larger than the size of its declared type.

O The largest integral type no larger than its size if its size is larger than the size of its declared type (see
§7.1.8.3, Over-sized bit-fields).

The container type contributes to the alignment of the containing aggregate in the same way a plain (not bit-field)
member of that type would, without exception for zero-sized or anonymous bit-fields.

Note The C++ standard states that an anonymous bit-field is not a member, so it is unclear whether or not an
anonymous bit-field of non-zero size should contribute to an aggregate’s alignment. Under this ABI it
does.

The content of each bit-field is contained by exactly one instance of its container type.
Initially, we define the layout of fields that are no bigger than their container types.

7.1.8.1 Bit-fields no larger than their container

Let F be a bit-field whose address we wish to determine. We define the container address, Ca (F), to be the byte
address

CA(F) = &(container(F));
This address will always be at the Natural Alignment of the container type, that is
CA(F) % sizeof (container (F)) == 0.
The bit-offset of F within the container, K (F), is defined in an endian-dependent manner:

O For big-endian data types X (F) is the offset from the most significant bit of the container to the most
significant bit of the bit-field.

O For little-endian data types K (F) is the offset from the least significant bit of the container to the least
significant bit of the bit-field.

A bit-field can be extracted by loading its container, shifting and masking by amounts that depend on the byte
order, K (F), the container size, and the field width, then sign extending if needed.

The bit-address of ¥, BA (F), can now be defined as:
BA(F) = CA(F) * 8 + K(F)

For a bit address Ba falling in a container of width C and alignment 2 (< C) (both expressed in bits), define the
unallocated container bits (UCB) to be:

UCB(BA, C, A) = C - (BA % A)
We further define the truncation function
TRUNCATE (X, Y) = Y * [X/Y]

That is, the largest integral multiple of Y that is no larger than Xx.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 26 of 34

Procedure Call Standard for the ARM 64-bit Architecture

We can now define the next container bit address (NCB2) which will be used when there is insufficient space in the
current container to hold the next bit-field as

NCBA (BA, A) = TRUNCATE(BA + A — 1, A)
At each stage in the laying out of a sequence of bit-fields there is:
O A current bit address (CB2)
O A container size, C, and alignment, 2, determined by the type of the field about to be laid out (8, 16, 32, ...)
O A field width, w (= C).
For each bit-field, F, in declaration order the layout is determined by
1 If the field width, w, is zero, set CBA = NCBA (CBA, A)
2 Ifw > ucB(CBA, C, A),setCBA = NCBA(CBA, A)
3 AssignBA (F) = CBA
4 SetCBA = CBA + W.

Note The AAPCS64 does not allow exported interfaces to contain packed structures or bit-fields. However a
scheme for laying out packed bit-fields can be achieved by reducing the alignment, 2, in the above rules
to below that of the natural container type. ARMCC uses an alignment of A=8 in these cases, but GCC
uses an alignment of A=1.

7.1.8.2 Bit-field extraction expressions
To access a field, F, of width W and container width C at the bit-address BA (F) :

O Load the (naturally aligned) container at byte address TRUNCATE (BA (F), C) / 8 into a 64-bit register R
O SetQ = MAX (64, C)

O Little-endian, setR = (R << ((Q — W) — (BA MOD C))) >> (Q — W).

O Big-endian,setR = (R << (Q - C +(BA MOD C))) >> (Q — W).

see §7.1.8.5, Volatile bit-fields—preserving number and width of container accesses for volatile bit-fields.

7.1.8.3 Over-sized bit-fields

C++ permits the width specification of a bit-field to exceed the container size and the rules for allocation are given
in [GC++ABI]. Using the notation described above, the allocation of an over-sized bit-field of width w, for a
container of width C and alignment 2 is achieved by:

O Selecting a new container width ¢’ which is the width of the fundamental integer data type with the largest
size less than or equal to W. The alignment of this container will be A’ . Note thatc’ >= canda’ >= A.

o Ifc’ > UCB(CBA, C’, A’) settingCBA = NCBA(CBA, A’). This ensures that the bit-field will be placed
at the start of the next container type.

O Allocating a normal (undersized) bit-field using the values (c, c’, a’) for (w, C, A).
O SettingCBA = CBA + W - C.

Each segment of an oversized bit-field can be accessed simply by accessing its container type.

7.1.8.4 Combining bit-field and non-bit-field members

A bit-field container may overlap a non-bit-field member. For the purposes of determining the layout of bit-field
members the CBA will be the address of the first unallocated bit after the preceding non-bit-field type.

Note Any tail-padding added to a structure that immediately precedes a bit-field member is part of the structure
and must be taken into account when determining the CBA.

When a non-bit-field member follows a bit-field it is placed at the lowest acceptable address following the allocated
bit-field.

Note When laying out fundamental data types it is possible to consider them all to be bit-fields with a width
equal to the container size. The rules in §7.1.8.1, Bit-fields no larger than their container can then be
applied to determine the precise address within a structure.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 27 of 34

Procedure Call Standard for the ARM 64-bit Architecture

7.1.8.5 Volatile bit-fields—preserving number and width of container accesses

When a volatile bit-field is read, its container must be read exactly once using the access width appropriate to the
type of the container.

When a volatile bit-field is written, its container must be read exactly once and written exactly once using the
access width appropriate to the type of the container. The two accesses are not atomic.

Multiple accesses to the same volatile bit-field, or to additional volatile bit-fields within the same container may not
be merged. For example, an increment of a volatile bit-field must always be implemented as two reads and a
write.

Note Note the volatile access rules apply even when the width and alignment of the bit-field imply that the
access could be achieved more efficiently using a narrower type. For a write operation the read must
always occur even if the entire contents of the container will be replaced.

If the containers of two volatile bit-fields overlap then access to one bit-field will cause an access to the other. For
example, in struct S {volatile int a:8; volatile char b:2}; an access to a will also cause an
access to b, but not vice-versa.

If the container of a non-volatile bit-field overlaps a volatile bit-field then it is undefined whether access to the non-
volatile field will cause the volatile field to be accessed.

7.2 Argument Passing Conventions
The argument list for a subroutine call is formed by taking the user arguments in the order in which they are
specified.

O For C++, an implicit this parameter is passed as an extra argument that immediately precedes the first user
argument. Other rules for marshaling C++ arguments are described in CPPABI64.

O For unprototyped (i.e. pre-ANSI or K&R C) and variadic functions, in addition to the normal conversions and
promotions, arguments of type £p16 are converted to type double.

The argument list is then processed according to the standard rules for procedure calls (see §5.4, Parameter
Passing) or the appropriate variant.

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 28 of 34

Procedure Call Standard for the ARM 64-bit Architecture

APPENDIX A C AND C++ SUPPORT FOR SIMD EXTENSIONS

The AARCHG64 architecture supports a number of short-vector operations. To facilitate accessing these types
from C and C++ a number of extended types need to be added to the language.

Following the conventions used for adding types to C99 a number of additional types (internal types) are defined
unconditionally. To facilitate use in applications a header file is also defined (arm neon.h) that maps these
internal types onto more user-friendly names. These types are listed in Table 7: Short vector extended types.

The header file arm_neon.h also defines a number of intrinsic functions that can be used with the types defined
below. The list of intrinsic functions and their specification is beyond the scope of this document.

Internal type arm_neon.h type Base Type Elements
__Int8x8 t int8x8 t signed byte 8
__Intléx4 t intl6x4 t signed half-word 4
_ Int32x2 t int32x2 t signed word 2
_ Uint8x8 t uint8x8 t unsigned byte 8
__Uintl6x4 t uintléx4 t unsigned half-word 4
_ Uint32x2 t uint32x2 t unsigned word 2
__Floatlé6x4 t | floatlé6xd t half-precision float 4
__Float32x2 t | float32x2 t single-precision float 2
__Poly8x8 t poly8x8 t unsigned byte 8
__Polylé6x4 t polyléx4 t unsigned half-word 4
__Int8xl6 t int8x16_t signed byte 16
_ Intlé6x8 t intl6x8 t signed half-word 8
_ Int32x4 t int32x4 t signed word 4
_ Int64x2 t int64x2 t signed double-word 2
_ Uint8x16_t uint8x16 t unsigned byte 16
_ Uintl6x8 t uintléx8 t unsigned half-word 8
_ Uint32x4 t uint32x4 t unsigned word 4
_ Uint64x2 t uint64x2 t unsigned double-word 2
__Floatl6x8 t | floatlox8 t half-precision float 8
__Float32x4 t | float32x4 t single-precision float 4
__Float64x2 t | float64x2 t double-precision float 2
__Poly8x16 t poly8x16 t unsigned byte 16
__Polylé6x8 t polyléx8 t unsigned half-word 8

ARM IHI 0055C_beta

Copyright © 2010-2013 ARM Limited. All rights reserved.

Page 29 of 34

Procedure Call Standard for the ARM 64-bit Architecture

Internal type arm_neon.h type Base Type Elements

__Poly64x2 t poly64x2 t unsigned double-word 2

Table 7: Short vector extended types

A.1 C++ Mangling

For C++ mangling purposes the user-friendly names are treated as though the equivalent internal name was
specified. Thus the function

void f (int8x8 t)
is mangled as
_Z1ful0 Int8x8 t

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 30 of 34

Procedure Call Standard for the ARM 64-bit Architecture

APPENDIX B VARIABLE ARGUMENT LISTS

Languages such as C and C++ permit routines that take a variable number of arguments (that is, the number of
parameters is controlled by the caller rather than the callee). Furthermore, they may then pass some or even all
of these parameters as a block to further subroutines to process the list. If a routine shares any of its optional
arguments with other routines then a parameter control block needs to be created as specified in §7.1.4 Additional
Types. The remainder of this appendix is informative.

B.1 Register Save Areas

The prologue of a function which accepts a variable argument list and which invokes the va start macro is
expected to save the incoming argument registers to two register save areas within its own stack frame: one area
to hold the 64-bit general registers xn-x7, the other to hold the 128-bit FP/SIMD registers vn-v7. Only parameter
registers beyond those which hold the named parameters need be saved, and if a function is known never to
accept parameters in registers of that class, then that register save area may be omitted altogether. In each area
the registers are saved in ascending order. The memory format of FP/SIMD registers save area must be as if
each register were saved using the integer str instruction for the entire (ie Q) register.

B.2 The va_list type

The va_ 1list type may refer to any parameter in a parameter list, which depending on its type and position in the
argument list may be in one of three memory locations: the current function’s general register argument save area,
its FP/SIMD register argument save area, or the calling function’s outgoing stack argument area.

typedef struct va list {

void * stack; // next stack param

void * gr top; // end of GP arg reg save area

void * vr top; // end of FP/SIMD arg reg save area

int __gr offs; // offset from _ gr top to next GP register arg

int __vr offs; // offset from _ vr top to next FP/SIMD register arg

} va_list;

B.3 The va_start() macro

The va_start macro shall initialize the fields of its va_1ist argument as follows, where named gr represents
the number of general registers known to hold named incoming arguments and named_vr the number of
FP/SIMD registers known to hold named incoming arguments.

O _ stack: set to the address following the last (highest addressed) named incoming argument on the stack,
rounded upwards to a multiple of 8 bytes, or if there are no named arguments on the stack, then the value of
the stack pointer when the function was entered.

O gr_ top: setto the address of the byte immediately following the general register argument save area, the
end of the save area being aligned to a 16 byte boundary.

O _ vr_ top: setto the address of the byte immediately following the FP/SIMD register argument save area, the
end of the save area being aligned to a 16 byte boundary.

O gr offs:setto0 - ((8 - named gr) * 8).

O vr offs:setto0 - ((8 - named vr) * 16).

If it is known that a va_1ist structure is never used to access arguments that could be passed in the FP/SIMD
argument registers, then no FP/SIMD argument registers need to be saved, andthe = vr topand vr offs
fields initialised to zero. Furthermore, if in this case the general register argument save area is located
immediately below the value of the stack pointer on entry, then the _ stack field may set to the address of the
anonymous argument in the general register argument save area andthe gr topand gr offs fields also

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 31 of 34

Procedure Call Standard for the ARM 64-bit Architecture

set to zero, permitting a simplified implementation of va_arg which simply advances the stack pointer
through the argument save area and into the incoming stacked arguments. This simplification may not be used in
the reverse case where anonymous arguments are known to be in FP/SIMD registers but not in general registers.

Although this standard does not mandate a particular stack frame organisation beyond what is required to meet
the stack constraints described in §5.2.2 The Stack, Figure 3, Example stack frame layout illustrates one possible
stack layout for a variadic routine which invokes the va_start macro.

Stack before Stack after
; calling a function L ' L calling a function ; '
4 4 1 4 4 1
1 1
LR" LR"
N il g FP" 3
FP Dynamic Allecation 8 EE"W Dynamic Allocation 8
Stack Arg Area Stack Arg Area
5P (outgoing) SP—» {incoring) -
Stack grows o extry
down GR Arg Save Area
VR Arg Save Area
Callee-Saved Registers
3
8
Local Variables
LR'
FP'
EmFﬂ:; mnnmg’ Dynamic Allocation
— T Stack Arg Area
SP : foutgoing) _
while runntng StﬂCk grows
down

\

Figure 3, Example stack frame layout

Focussing on just the top of callee’s stack frame, Figure 4, The va_list illustrates graphically how the va 1list
structure might be initialised by va start to identify the three potential locations of the next anonymous
argument.

next stack arg i stack
Spr Stack Arg Area < - or top
G GR Arg Save Area 2

r

va_list

next gen req arg

> _ _ vr top

VR Arg Save Area

- otttz

nextfolsimdregarg

Figure 4, The va_list

B.4 The va_arg() macro

The algorithm to implement the generic va_arg (ap, type) macro is then most easily described using a C-like
“pseudocode”, as follows:

type va_arg (va_list ap, type)

{

int nreg, offs;

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 32 of 34

Procedure Call Standard for the ARM 64-bit Architecture

if (type passed in general registers) {
offs = ap. gr offs;
if (offs >= 0)

goto on_stack; // reg save area empty
if (alignof (type) > 8)
offs = (offs + 15) & -16; // round up

nreg = (sizeof (type) + 7) / 8;
ap. gr offs = offs + (nreg * 8);
if (ap._ gr offs > 0)

goto on_stack; // overflowed reg save area
#ifdef BIG ENDIAN
if (classof(type) != “aggregate” && sizeof (type) < 8)

offs += 8 - sizeof (type);
#endif
return *(type *) (ap._gr top + offs);
} else if (type is an HFA or an HVA) {

type ha; // treat as “struct {ftype field[n];}”
offs = ap. vr offs;
if (offs >= 0)

goto on_stack; // reg save area empty

nreg = sizeof (type) / sizeof (ftype);
ap. vr offs = offs + (nreg * 16);
if (ap._ vr offs > 0)
goto on_stack; // overflowed reg save area
#ifdef BIG ENDIAN
if (sizeof (ftype) < 16)
offs += 16 - sizeof (ftype);
#endif
for (i = 0; i < nreg; i++, offs += 16)
ha.field[i] = *((ftype *) (ap. vr top + offs));
return ha;
} else if (type passed in fp/simd registers) {
offs = ap. vr offs;
if (offs >= 0)
goto on_stack; // reg save area empty
nreg = (sizeof (type) + 15) / 16;
ap_vr offs = offs + (nreg * 16);
if (ap. vr offs > 0)

goto on_stack; // overflowed reg save area
#ifdef BIG ENDIAN
if (classof (type) != “aggregate” && sizeof (type) < 16)
offs += 16 - sizeof (type);
#endif
return *(type *) (ap._vr top + offs);
}
on_stack:

intptr t arg = ap._ stack;
if (alignof (type) > 8)

arg = (arg + 15) & -16;
ap. stack = (void *) ((arg + sizeof(type) + 7) & -8);
#ifdef BIG ENDIAN
if (classof(type) != “aggregate” && sizeof (type) < 8)

arg += 8 - sizeof (type);
#endif
return * (type *)arg;

ARM IHI 0055C_beta Copyright © 2010-2013 ARM Limited. All rights reserved. Page 33 of 34

Procedure Call Standard for the ARM 64-bit Architecture

Review note: The above pseudo code does not currently handle composite types that are passed by

value, and where a copy is made and reference created to the copy. This will be corrected in a future

revision of this standard.

It is expected that the implementation of the va_arg macro will be specialized by the compiler for the type, size
and alignment of the type. By way of example the following sample code illustrates one possible expansion of
va_arg(ap,int) for the LP64 data model, where register x0 holds a pointerto va_list ap, and the argument
is returned in register w1. Further optimizations are possible.

1ldr wl, [x0, # gr offs]
tbz wl, #31, stack
adds w2, wl, #8
str w2, [x0, # gr offs]
bgt on_stack
ldr x2, [x0, # gr top]
#ifdef BIG ENDIAN
add wl, wl, #4
#endif
ldr wl, [x2, wl, sxtw]
b done
on_stack:
ldr x2, [x0, # stack]
#ifdef BIG ENDIAN
1ldr wl, [x2, #4]
add x2, #8
felse
1ldr wl, [x2], #8
#endif
str x2, [x0, # stack]
done:

ARM IHI 0055C_beta

Copyright © 2010-2013 ARM Limited. All rights reserved.

// get register offset

// reg save area empty?

// advance to next register offset
// save next register offset

// just overflowed reg save area?
// get top of save area

// adjust offset to low 32 bits

// load arg

// get stack slot pointer

// load low 32 bits
// advance to next stack slot

// load low 32 bits and advance stack slot

// save next stack slot pointer

Page 34 of 34

